
Compiler construction

Harm Berntsen s4244931, Danny Hendrix s4241746

June 20, 2014

1 Introduction

In this report we will describe our SPL compiler. We have the following additional features:

1. Support for higher order functions and partial application of functions.

2. Support for multiple error messages with the location of the error in the input code (via
a generated HTML page and console output). Only the semantic analysis supports those
error messages. When the scanner finds an error it will immediately stop and give you the
location of the wrong token in the source file.

3. Garbage collection for SSM code.

4. Tail call optimization for SSM. (LLVM’s optimizer includes tail call optimization)

5. Optimization of static expressions.

6. Compilation to LLVM code.

7. Demonstration of SPL code running on an ATmega88 microcontroller.

8. A modified SSM interpreter that allows you to run SSM code without the user interface.

2 Grammar

We had to change the grammar slightly to solve some conflicts between rules. Our grammar
parses the same programs as stated in the first assignment. The only addition is a new type that
is separated by an arrow. This is used to specify types of functions. For example, the function
Bool foo(Int a, Int b) has the type Int -> Int -> Bool. Using this notation, you can write
programs like:

Int add(Int a, Int b) { return a + b;}

Void main() {

Int -> Int add2 = add(2);

Int five = add2(3); //yields 5

}

In Figure 1 we show our version of the grammar.

3 Parser

The parser transforms the raw SPL code in a processable parse tree. Part of the parsing is the
tokenizer. In our compiler this is a straight forward implementation where we read characters one
by one and use parser methods who, on success, save tokens in a monadic state.
The parser itself is a bottom-up LALR parser. At first we started creating the parse schema
manually. We soon found this was a hard and error-prone task and therefore we decided, after
consulting our teacher, to use a tool to create the parsing table automatically. This brought us to
the GNU parser generator Bison. Figure 2 shows the parsing schema of our grammar, generated
by Bison. In total our grammar of 61 rules consists of 143 states and 762 transitions. This clearly
shows that if we would have done it manually: it would have cost too much time. To implemented
the transition and reducing rules output from Bison, we made an automated script. This allowed
us to extend and alter the grammer in later stages. This came to use when we decided to extend
SPL with higher order functions where we had to extend the grammar.

1

Decl : VarDecl
| FunDecl

VarDecl : Type “id” ‘=’ Exp ‘;’

FunctionBegin : VarDecl FunctionBegin
| Stmt

FunDecl : Type “id” ‘(’ FArgsOpt ’)’ ’{’ FunctionBegin StmtStar ’}’
| “Void” “id” ‘(’ FArgsOpt ’)’ ’{’ FunctionBegin StmtStar ’}’

Type : “Int”
| “Bool”
| ‘(’ Type ‘,’ Type ‘)’
| ‘[’ Type ‘]’
| ”id”
| Type “->” Type
| (Type “->” Type)

FArgs : FArgs ‘,’ Type “id”
| Type “id”

FArgsOpt : %empty
| FArgs

Stmt : ’{’ StmtStar ’}’
| “if” ‘(’ Exp ‘)’ Stmt
| “if” ‘(’ Exp ‘)’ Stmt “else” Stmt
| “while” ‘(’ Exp ’)’ Stmt
| “id” Field ‘=’ Exp ‘;’
| FunCall ‘;’
| “return” ‘;’
| “return” Exp ‘;’

StmtStar : %empty
| Stmt StmtStar

Exp : “id” Field
| Exp ‘+’ Exp | Exp ‘-’ Exp | Exp ‘*’ Exp | Exp ‘/’ Exp | Exp ‘%’ Exp
| Exp “==” Exp | Exp ’<’ Exp | Exp ’>’ Exp
| Exp “<=” Exp | Exp “>=” Exp | Exp “! =” Exp | Exp “&&” Exp | Exp “||” Exp
| Exp ’:’ Exp | ’ !’ Exp | ‘-’ Exp | “int” | “False”
| “True” | ‘(’ Exp ‘)’ | FunCall | ‘[’ ‘]’ | ‘(’ Exp ‘,’ Exp ‘)’

Field : %empty
| ‘.’ “hd” Field
| ‘.’ “tl” Field
| ‘.’ “fst” Field
| ‘.’ “snd” Field

FunCall : “id” ‘(’ ‘)’
| “id” ‘(’ ActArgs ‘)’

ActArgs : Exp
| Exp ‘,’ ActArgs

Figure 1: The grammar that is used in our parser. In addition to some precedence rules, this is
the input of bison.

2

State 0

 0 $accept: . Decl $end

State 1

 12 Type: "id" .

"id"

State 2

 10 Type: '(' . Type ',' Type ')'
 14 | '(' . Type "->" Type ')'

'('

State 3

 7 FunDecl: "Void" . "id" '(' FArgsOpt ')' '{' FunctionBegin StmtStar '}'

"Void"

State 4

 8 Type: "Int" .

"Int"

State 5

 9 Type: "Bool" .

"Bool"

State 6

 11 Type: '[' . Type ']'

'['

State 7

 0 $accept: Decl . $end

Decl

State 8

 1 Decl: VarDecl .

VarDecl

State 9

 2 Decl: FunDecl .

FunDecl

State 10

 3 VarDecl: Type . "id" '=' Exp ';'
 6 FunDecl: Type . "id" '(' FArgsOpt ')' '{' FunctionBegin StmtStar '}'
 13 Type: Type . "->" Type

Type

R12

"id"

'('

"Int" "Bool"

'['

State 11

 10 Type: '(' Type . ',' Type ')'
 13 | Type . "->" Type
 14 | '(' Type . "->" Type ')'

Type

State 12

 7 FunDecl: "Void" "id" . '(' FArgsOpt ')' '{' FunctionBegin StmtStar '}'

"id"

R8 R9

"id"

'('

"Int" "Bool"

'['

State 13

 11 Type: '[' Type . ']'
 13 | Type . "->" Type

Type

State 14

 0 $accept: Decl $end .

$end

R1 R2

State 15

 13 Type: Type "->" . Type

"->"

State 16

 3 VarDecl: Type "id" . '=' Exp ';'
 6 FunDecl: Type "id" . '(' FArgsOpt ')' '{' FunctionBegin StmtStar '}'

"id"

State 17

 13 Type: Type "->" . Type
 14 | '(' Type "->" . Type ')'

"->"

State 18

 10 Type: '(' Type ',' . Type ')'

','

State 19

 7 FunDecl: "Void" "id" '(' . FArgsOpt ')' '{' FunctionBegin StmtStar '}'

'('

"->"

State 20

 11 Type: '[' Type ']' .

']'

Acc

"id"

'('

"Int" "Bool"

'['

State 21

 13 Type: Type . "->" Type
 13 | Type "->" Type .

Type

State 22

 3 VarDecl: Type "id" '=' . Exp ';'

'='

State 23

 6 FunDecl: Type "id" '(' . FArgsOpt ')' '{' FunctionBegin StmtStar '}'

'('

"id"

'('

"Int" "Bool"

'['

State 24

 13 Type: Type . "->" Type
 13 | Type "->" Type .
 14 | '(' Type "->" Type . ')'

Type

"id"

'('

"Int" "Bool"

'['

State 25

 10 Type: '(' Type ',' Type . ')'
 13 | Type . "->" Type

Type

"id"

'('

"Int" "Bool"

'['

State 26

 13 Type: Type . "->" Type
 16 FArgs: Type . "id"

Type

State 27

 15 FArgs: FArgs . ',' Type "id"
 18 FArgsOpt: FArgs .

FArgs

State 28

 7 FunDecl: "Void" "id" '(' FArgsOpt . ')' '{' FunctionBegin StmtStar '}'

FArgsOpt

R17

R11

R13

State 29

 44 Exp: '!' . Exp

'!'

State 30

 45 Exp: '-' . Exp

'-'

State 31

 29 Exp: "id" . Field
 58 FunCall: "id" . '(' ')'
 59 | "id" . '(' ActArgs ')'

"id"

State 32

 49 Exp: '(' . Exp ')'
 52 | '(' . Exp ',' Exp ')'

'('

State 33

 51 Exp: '[' . ']'

'['

State 34

 46 Exp: "int" .

"int"

State 35

 47 Exp: "False" .

"False"

State 36

 48 Exp: "True" .

"True"

State 37

 3 VarDecl: Type "id" '=' Exp . ';'
 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

State 38

 50 Exp: FunCall .

FunCall

"id"

'('

"Int" "Bool"

'['

TypeFArgs

State 39

 6 FunDecl: Type "id" '(' FArgsOpt . ')' '{' FunctionBegin StmtStar '}'

FArgsOpt

R17

State 40

 14 Type: '(' Type "->" Type ')' .

')'

R13 "->"
State 41

 10 Type: '(' Type ',' Type ')' .

')'

"->"

State 42

 16 FArgs: Type "id" .

"id"

State 43

 15 FArgs: FArgs ',' . Type "id"

','

R18
State 44

 7 FunDecl: "Void" "id" '(' FArgsOpt ')' . '{' FunctionBegin StmtStar '}'

')'

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 45

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp
 44 | '!' Exp .

Exp

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 46

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp
 45 | '-' Exp .

Exp

State 47

 58 FunCall: "id" '(' . ')'
 59 | "id" '(' . ActArgs ')'

'('

State 48

 54 Field: '.' . "hd" Field
 55 | '.' . "tl" Field
 56 | '.' . "fst" Field
 57 | '.' . "snd" Field

'.'

State 49

 29 Exp: "id" Field .

Field

R53

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 50

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp
 49 | '(' Exp . ')'
 52 | '(' Exp . ',' Exp ')'

Exp

State 51

 51 Exp: '[' ']' .

']'

R46 R47R48

State 52

 43 Exp: Exp ':' . Exp

':'

State 53

 42 Exp: Exp "||" . Exp

"||"

State 54

 41 Exp: Exp "&&" . Exp

"&&"

State 55

 35 Exp: Exp "==" . Exp

"=="

State 56

 40 Exp: Exp "!=" . Exp

"!="

State 57

 36 Exp: Exp '<' . Exp

'<'

State 58

 37 Exp: Exp '>' . Exp

'>'

State 59

 38 Exp: Exp "<=" . Exp

"<="

State 60

 39 Exp: Exp ">=" . Exp

">="

State 61

 30 Exp: Exp '+' . Exp

'+'

State 62

 31 Exp: Exp '-' . Exp

'-'

State 63

 32 Exp: Exp '*' . Exp

'*'

State 64

 33 Exp: Exp '/' . Exp

'/'

State 65

 34 Exp: Exp '%' . Exp

'%'

State 66

 3 VarDecl: Type "id" '=' Exp ';' .

';'

R50

State 67

 6 FunDecl: Type "id" '(' FArgsOpt ')' . '{' FunctionBegin StmtStar '}'

')'

R14 R10

R16

"id"

'('

"Int" "Bool"

'['

State 68

 13 Type: Type . "->" Type
 15 FArgs: FArgs ',' Type . "id"

Type

State 69

 7 FunDecl: "Void" "id" '(' FArgsOpt ')' '{' . FunctionBegin StmtStar '}'

'{'

':'

"||"

"&&"

"==""!="

'<' '>'"<=" ">="

'+''-'

'*'

'/''%'

R44

'*'

'/''%'

R45

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 70

 58 FunCall: "id" '(' ')' .

')'

State 71

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp
 60 ActArgs: Exp .
 61 | Exp . ',' ActArgs

Exp

State 72

 59 FunCall: "id" '(' ActArgs . ')'

ActArgs

State 73

 54 Field: '.' "hd" . Field

"hd"

State 74

 55 Field: '.' "tl" . Field

"tl"

State 75

 56 Field: '.' "fst" . Field

"fst"

State 76

 57 Field: '.' "snd" . Field

"snd"

R29

':'

"||"

"&&"

"==""!="

'<' '>'"<=" ">="

'+''-'

'*'

'/''%'

State 77

 49 Exp: '(' Exp ')' .

')'

State 78

 52 Exp: '(' Exp ',' . Exp ')'

','

R51

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 79

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp
 43 | Exp ':' Exp .

Exp

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 80

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 42 | Exp "||" Exp .
 43 | Exp . ':' Exp

Exp

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 81

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 41 | Exp "&&" Exp .
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 82

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 35 | Exp "==" Exp .
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 83

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 40 | Exp "!=" Exp .
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 84

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 36 | Exp '<' Exp .
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 85

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 37 | Exp '>' Exp .
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 86

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 38 | Exp "<=" Exp .
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 87

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 39 | Exp ">=" Exp .
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 88

 30 Exp: Exp . '+' Exp
 30 | Exp '+' Exp .
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 89

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 31 | Exp '-' Exp .
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 90

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 32 | Exp '*' Exp .
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 91

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 33 | Exp '/' Exp .
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 92

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 34 | Exp '%' Exp .
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

R3

State 93

 6 FunDecl: Type "id" '(' FArgsOpt ')' '{' . FunctionBegin StmtStar '}'

'{'

"->"

State 94

 15 FArgs: FArgs ',' Type "id" .

"id"

'('

"Int" "Bool"

'['

State 95

 12 Type: "id" .
 23 Stmt: "id" . Field '=' Exp ';'
 58 FunCall: "id" . '(' ')'
 59 | "id" . '(' ActArgs ')'

"id"

State 96

 19 Stmt: '{' . StmtStar '}'

'{'

State 97

 20 Stmt: "if" . '(' Exp ')' Stmt
 21 | "if" . '(' Exp ')' Stmt "else" Stmt

"if"

State 98

 22 Stmt: "while" . '(' Exp ')' Stmt

"while"

State 99

 25 Stmt: "return" . ';'
 26 | "return" . Exp ';'

"return"

State 100

 4 FunctionBegin: VarDecl . FunctionBegin

VarDecl

State 101

 7 FunDecl: "Void" "id" '(' FArgsOpt ')' '{' FunctionBegin . StmtStar '}'

FunctionBegin

State 102

 3 VarDecl: Type . "id" '=' Exp ';'
 13 Type: Type . "->" Type

Type

State 103

 5 FunctionBegin: Stmt .

Stmt

State 104

 24 Stmt: FunCall . ';'

FunCall

R58

':'

"||"

"&&"

"==""!="

'<' '>'"<=" ">="

'+''-'

'*'

'/''%'

State 105

 61 ActArgs: Exp ',' . ActArgs

','

R60
State 106

 59 FunCall: "id" '(' ActArgs ')' .

')'

'.'

State 107

 54 Field: '.' "hd" Field .

Field

R53

'.'

State 108

 55 Field: '.' "tl" Field .

Field

R53

'.'

State 109

 56 Field: '.' "fst" Field .

Field

R53

'.'

State 110

 57 Field: '.' "snd" Field .

Field

R53

R49

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 111

 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp
 52 | '(' Exp ',' Exp . ')'

Exp

':'

"||"

"&&"

"==""!="

'<' '>'"<=" ">="

'+''-'

'*'

'/''%'

R43

"&&"

"==""!="

'<' '>'"<=" ">="

'+''-'

'*'

'/''%'

R42

"==""!="

'<' '>'"<=" ">="

'+''-'

'*'

'/''%'

R41

'<' '>'"<=" ">="

'+''-'

'*'

'/''%'

R35

'<' '>'"<=" ">="

'+''-'

'*'

'/''%'

R40

'+''-'

'*'

'/''%'

R36

'+''-'

'*'

'/''%'

R37

'+''-'

'*'

'/''%'

R38

'+''-'

'*'

'/''%'

R39

'*'

'/''%'

R30

'*'

'/''%'

R31

R32

R33R34

'('

"Int" "Bool"

'['

"id"'{'

"if"

"while"

"return"

VarDecl

TypeStmt

FunCall

State 112

 6 FunDecl: Type "id" '(' FArgsOpt ')' '{' FunctionBegin . StmtStar '}'

FunctionBegin

R15

'('

'.'

State 113

 23 Stmt: "id" Field . '=' Exp ';'

Field

R12R53

['=']

'{'

"if"

"while"

"return"

FunCall

State 114

 23 Stmt: "id" . Field '=' Exp ';'
 58 FunCall: "id" . '(' ')'
 59 | "id" . '(' ActArgs ')'

"id"

State 115

 28 StmtStar: Stmt . StmtStar

Stmt

State 116

 19 Stmt: '{' StmtStar . '}'

StmtStar

R27

State 117

 20 Stmt: "if" '(' . Exp ')' Stmt
 21 | "if" '(' . Exp ')' Stmt "else" Stmt

'('

State 118

 22 Stmt: "while" '(' . Exp ')' Stmt

'('

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 119

 25 Stmt: "return" ';' .

';'

State 120

 26 Stmt: "return" Exp . ';'
 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

'('

"Int" "Bool"

'['

"id"'{'

"if"

"while"

"return"

VarDecl

TypeStmt

FunCall

State 121

 4 FunctionBegin: VarDecl FunctionBegin .

FunctionBegin'{'

"if"

"while"

"return"

FunCall "id"

Stmt
State 122

 7 FunDecl: "Void" "id" '(' FArgsOpt ')' '{' FunctionBegin StmtStar . '}'

StmtStar

R27

"->"

State 123

 3 VarDecl: Type "id" . '=' Exp ';'

"id"

R5

State 124

 24 Stmt: FunCall ';' .

';'

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

Exp

State 125

 61 ActArgs: Exp ',' ActArgs .

ActArgs

R59

R54 R55 R56 R57

':'

"||"

"&&"

"==""!="

'<' '>'"<=" ">="

'+''-'

'*'

'/''%'

State 126

 52 Exp: '(' Exp ',' Exp ')' .

')'

'{'

"if"

"while"

"return"

FunCall "id"

Stmt
State 127

 6 FunDecl: Type "id" '(' FArgsOpt ')' '{' FunctionBegin StmtStar . '}'

StmtStar

R27

State 128

 23 Stmt: "id" Field '=' . Exp ';'

'='

'('

'.'

Field

R53

'{'

"if"

"while"

"return"

FunCall "id"

Stmt

State 129

 28 StmtStar: Stmt StmtStar .

StmtStar

R27
State 130

 19 Stmt: '{' StmtStar '}' .

'}'

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 131

 20 Stmt: "if" '(' Exp . ')' Stmt
 21 | "if" '(' Exp . ')' Stmt "else" Stmt
 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 132

 22 Stmt: "while" '(' Exp . ')' Stmt
 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

R25

':'

"||"

"&&"

"==""!="

'<' '>'"<=" ">="

'+''-'

'*'

'/''%'

State 133

 26 Stmt: "return" Exp ';' .

';'

R4
State 134

 7 FunDecl: "Void" "id" '(' FArgsOpt ')' '{' FunctionBegin StmtStar '}' .

'}'

'='

R24

R61

R52

State 135

 6 FunDecl: Type "id" '(' FArgsOpt ')' '{' FunctionBegin StmtStar '}' .

'}'

'!'

'-'

"id"

'('

'['"int" "False""True" FunCall

State 136

 23 Stmt: "id" Field '=' Exp . ';'
 30 Exp: Exp . '+' Exp
 31 | Exp . '-' Exp
 32 | Exp . '*' Exp
 33 | Exp . '/' Exp
 34 | Exp . '%' Exp
 35 | Exp . "==" Exp
 36 | Exp . '<' Exp
 37 | Exp . '>' Exp
 38 | Exp . "<=" Exp
 39 | Exp . ">=" Exp
 40 | Exp . "!=" Exp
 41 | Exp . "&&" Exp
 42 | Exp . "||" Exp
 43 | Exp . ':' Exp

Exp

R28 R19

':'

"||"

"&&"

"==""!="

'<' '>'"<=" ">="

'+''-'

'*'

'/''%'

State 137

 20 Stmt: "if" '(' Exp ')' . Stmt
 21 | "if" '(' Exp ')' . Stmt "else" Stmt

')'

':'

"||"

"&&"

"==""!="

'<' '>'"<=" ">="

'+''-'

'*'

'/''%'

State 138

 22 Stmt: "while" '(' Exp ')' . Stmt

')'

R26

R7 R6

':'

"||"

"&&"

"==""!="

'<' '>'"<=" ">="

'+''-'

'*'

'/''%'

State 139

 23 Stmt: "id" Field '=' Exp ';' .

';'

'{'

"if"

"while"

"return"

FunCall "id"

State 140

 20 Stmt: "if" '(' Exp ')' Stmt .
 21 | "if" '(' Exp ')' Stmt . "else" Stmt

Stmt'{'

"if"

"while"

"return"

FunCall "id"

State 141

 22 Stmt: "while" '(' Exp ')' Stmt .

Stmt

R23

State 142

 21 Stmt: "if" '(' Exp ')' Stmt "else" . Stmt

"else"

R20

R22

'{'

"if"

"while"

"return"

FunCall "id"

State 143

 21 Stmt: "if" '(' Exp ')' Stmt "else" Stmt .

Stmt

R21

Figure 2: Schema of all the states and transitions in our parser

4 Semantic analysis

4.1 Scoping rules

Variable declarations and type checking is divided in 2 scopes: variables defined outside functions
(globals) and variables declared inside functions (locals, so including arguments). Because we
allow higher order functions, it is not allowed to have variables and functions with the same name.
It is allowed to declare a global and local variable with the same name. This will produce a
warning. The function arguments are not allowed to override. Otherwise you would be able to
specify multiple arguments with the same name.
When you use lists, tuples or partial function application as local variables in a function, their
memory will not be freed. This allows you to use those variables in the global variables. For
example, you can create a tuple in a function and add that tuple to a global list. We included a
garbage collector for SSM which can delete unreferenced objects from the heap.

4.2 Type rules

We applied monomorphism in our semantic analysis. As a result, when you have a function with
a parameter a -> a you can only use this function to transform something of type a to a.
Type variables occuring on the global scope are defined as ‘for all’. This means that that polymor-
phic functions like the identity function (a->a) can be used with different types. With variables
declared within a function or parameters of a function, the type variable a can have only one
meaning. So a cannot match with b or Int. When a global polymorphic function is called, the
type variables in that global function will be quantified as ‘for all’. In our semantic analysis we
rename the ‘for all’ type variables to something unique so we can distinguish them. This means

3

that you can write global functions like the identity function that can be used with different types.
In the code, the insertGlobalTypeVar function links those global type variables to types from
within the function.
With the monomorphism rules, the semantic analysis is more strict than we actually need for our
SSM code generator. For example, if you pass the identity function as argument to a function,
calling the identity function in the argument can be done with different types multiple times and
the program will still execute as expected. The semantic analysis will reject this though.

In order to be able to declare nested lists, we allow that the empty list expression can repre-
sent multiple nested lists. For example: [[Int]] a = []; is allowed. However, when you do
[[Int]] b = a : [] you get an error because the result of the right hand side is [[[Int]]].

It is allowed to call a function before it has been declared. We first scan the source code for
functions and store the types of each function before we type check the program. Polymorphic
functions only have one implementation in the compiled code. Functions can use global variables
that are declared later on in the file. We do the analysis in this order:

1. Store all the declared types of the global functions

2. Analyse each global variable

3. Analyse each function

When variable initializer calls a function that uses a global variable that has not been initialized
yet the global variable will default to 0. So a bool is false, integer is 0 and lists are empty. For
other situations you will get unexpected results since the tuple pointer is still a null pointer.

5 SSM code generation

5.1 Calling semantics

We have chosen for the ‘Java approach’. Boolean and integer values will be copied as value when
a function is called and other types will be passed by reference to an object on the heap.

5.2 Memory Management

Every block starts with an object header that defines the size of the block. Each block has at
least the size 1, namely the object header. When we allocate new objects we first allocate the new
block on the heap and then fill it with the correct values. To reduce heap memory usage we made
a simple garbage collector (GC) which is explained in detail in chapter 6.3.

5.3 Compilation scheme

The program will first write the stack to the heap. The garbage collector then knows where the
stack starts. The next thing a program has to do is creating the global variables. This is done
by counting the number of VarDecls and then creating a block on the heap with this size. Each
variable is put there in the order it is declared. In order to access a global variable, we use the
fact that global variables are declared first on the heap and the heap always begins at a static
address: 0x000007d0.

5.3.1 Memory allocation of types

The types Int and Bool both fit in a word so they can be placed directly on the stack or heap
where needed as value. The empty list is encoded as null pointer value.
Value: Int, Bool and (possibly 0) pointer.

4

Tuple

The tuple (a, b) is encoded on the heap as:
Object header

a
b

Populated list element

Object header

value of one element
pointer to next element, 0 if end of list

Partial function application

Partial function application will be stored as:
Object header

last additional supplied argument
...

first additional supplied argument
function pointer(if this is the very first arg supplied to the function)

pointer to previous arguments, 0 if none
Every time you do partial function application we create a new block. We could have copied the
previous arguments into this new block but that uses more heap space. Eventually when calling
the function we can place all the arguments on the stack and call it as usual.

5.3.2 Function calls

Arguments are placed in reverse order on the stack. The function that supplies the final argument
in a partial function application will have to remove the arguments from the stack. Due to this,
each function places the number of arguments on the stack so we know how much arguments there
need to be removed from the stack.

6 Extensions

6.1 Higher order functions

In our implementation of SPL we allow higher order functions. This means that every variable
can be a function. To denote this we have introduced a new type in the grammar. Every function
is of the type A0 → ... → An → Ret where A are the arguments of the function and Ret is the
return type of the function. For example Int→ Bool→ Int is a function where the first argument
is of type Int and the second argument is of type Bool. The return type of this function is of type
Int. To type check function calls we have a method resolveFunction. This method does a lookup
of the type of the function. It then compares the given argument types with the definitions type.
For this it keeps track of declared type ids (a → a becomes Int → Int if the first argument was
an integer). This method returns the remaining type of the function call. If the function was
called with fewer arguments than the definition then the remaining type is a function type. A
higher order function can be treated the same as a variable, so id is the same as id() when id is
a function. When you want to do partial application, you can simply ‘call’ the function with less
arguments than it has.

5

6.2 Error reporting

Our abstract syntax tree contains the location of every element. Each element has a Context record
which contains the location. We added it as a record to allow us to easily add more information
to an element later on. In the end it appeared that we did not need additional information in our
abstract syntax tree so the record only contains the location. We created a special error module
which allows us to easily create error messages and to nest them. By combining the state monad
with the error monad we could create a system where we can throw errors and allow functions
to catch them or add additional information to the error. For example, the code that analyses
a variable wraps all the generated errors with something like “When analysing function x. . . ”.
This will help getting a better sense of what went wrong. Errors in the semantic analysis and the
parser are shown both as output in plain text and as HTML error report. The plain text gives
an overview of the errors and shows an in-depth location with line, position and also the function
in which the error occurs. The HTML error report shows a more sophisticated overview with
a pretty-printed version of the input and in-line error messages and warnings. Examples of the
output can be found with the samples, included in the submission of our compiler.

6.3 Garbage collection

The GC is written in SPL to demonstrate the use of our compiler. This also allows a more sophis-
ticated implementation. The GC is only activated when the heap pointer reaches the maximum
allowed heap-space. It then looks for heap blocks that have no reference on both the stack and the
heap. For this we have a global variable that has the value of the start of the stack. This allows
us to limit the search to only the stack and the heap. The size of the blocks that we allocate
on the heap can be of any length. Tuples and list items have a length of 3 (for a tuple that is a
header, the left value and the right value) but blocks for the higher order function can be of any
length. The GC tries to find a gap that is big enough for the to be allocated block. It does this by
”freeing” consecutive blocks with a combined size big enough to fit the new block. The downside
of this is that it leaves holes on the heap if the freed size is bigger then the size of the new block.
We expect however that these gaps are not too big since the most used blocks, the tuple and list
items have only a size of 3 and can fit in most gaps. Overall this simple implementation of a GC
does a good enough job. The SPL source code is included in the submission. The SSM output is
slightly modified to make the labels unique and unoverwritable. The type checker does find errors
in the GC SPL code. These are caused by default functions that were added to make the GC read
direct values in the stack/heap.

6.4 Tail call optimization for SSM

We added tail call optimization for the SSM code we generate. Tail call optimization will happen
when you are within a function that on return only calls a globally defined function with the same
amount of parameters. We do not apply this optimization with higher order functions because
when compiling you don’t know how much arguments the function has. We also did not do this
with functions with less arguments because each function stores the number of arguments on the
stack so that the caller knows how much variables need to be removed from the stack. Calling a
function with less arguments via tail call optimization will change that number.

6.5 Expression optimization

In our parser, we added optimizations for some of the expressions and statements. For example,
if you write 1+2, only the result, 3, will be stored. In our reduce function in the GrammarTable
module we added additional pattern matches to do this. When an if statement is reduced to
if(false), we also remove that. This will help speed up the resulting SSM code. The LLVM
optimizer is also optimizing the static expressions.

6

6.6 LLVM code generation

The Low Level Virtual Machine (LLVM) is a compiler infrastructure. In our compiler we convert
SPL to LLVM’s intermediate language. LLVM can optimize this intermediate language. This
means that we initially don’t need to focus on emitting optimized code since LLVM’s optimizer
can optimize a lot. For example, we wrote a recursive and non-recursive SPL program to calculate
the greatest common divisor of two numbers. LLVM’s optimizer fully calculated the result, only
the code to print the result remained.

6.6.1 Memory management

LLVM’s intermediate language has unlimited typed registers. Each typed register can only be
assigned once. Using the alloca, load and store instruction you can modify data that is stored in
a pointer. In our compiler we use those instructions to allow us to assign new values to variables
in SPL. The mem2reg parameter of LLVM will remove all unnecessary allocate, load and store
instructions. When the code is compiled to machine code for a specific architecture, LLVM will
decide how the physical hardware registers will be used.
Because the variables(typed registers) have a type, our compiler needs to emit well typed code.
This became a problem with polymorphic functions. The polymorphic functions need to be able
to accept any type. When they return a type variable, the caller expects that return value to be
a specific type. To solve the problem we could generate functions for each combination of types
we need. This means that we need to recursively track all the function calls and make sure that
we generate all needed combinations. This could lead to lots of different versions of functions,
especially if you have polymorphic functions that call polymorphic functions again. We have
chosen to encode type variables as i8*, LLVM’s equivalent of the the void * from C. We then had
to make the choice whether the pointer would point to the actual value or would contain the actual
value(like we did in SPL). When you let the pointer point to the value you have the advantage
that the size of a pointer does not limit your possibilities. For example, if we would want SPL
to have 256bit integers, we could not fit those inside a pointer. We have chosen to encode the
values of booleans and integers inside the pointer itself. Since we use 32bit integers we are sure we
can fit those inside pointers on our 64 bit OS on our computers. This would also make it easier
to generate code for partial function application: we then don’t need to worry about pointers to
stack memory that might not be valid anymore. The integers and booleans are encoded in the
pointer, for other types the pointer points to some heap memory.
LLVM does not have a malloc instruction to allocate heap memory, you need to call the libc malloc
function for that. When construction lists and tuples, we call this function to allocate the heap
memory for them. We use a similar structure as in SPL except that we don’t have a header that
contains the size of the memory block. Like calls to polymorphic functions, the values stored in
tuples and lists are converted to a pointer first. We do this using the inttoptr instruction. This
instruction does nothing if the value already is a pointer, otherwise it converts an arbitrary int
to pointer, adding zero bits or truncating when needed. Our compiler has conversions in a lot
of places. For example, every time you assign a new value to an Int variable in SPL, we first do
a ptrtoint conversion to make sure we are not trying to store an i8* in an i32. The LLVM
typechecker does not accept that. We could have made our compiler smarter by remembering the
type of each operand. LLVM’s optimizer is able to remove the unnecessary conversions so in the
end it doesn’t matter.

6.6.2 Used packages

To convert SPL to LLVM’s IR, we use the llvm-general and llvm-general-pure package1. The
pure package contains an abstract syntax tree for LLVM’s IR, the other contains code that uses
LLVM’s C++ API to generate the output or directly run the code using LLVM’s JIT compiler. We
had some trouble installing those packages. Danny uses Windows and couldn’t get the packages

1https://github.com/bscarlet/llvm-general

7

See https://github.com/bscarlet/llvm-general

to install there. On Linux the packages installed fine but couldn’t be used in combination with
GHCi version 7.6 that is shipped with Ubuntu. GHCi is an interactive environment where you
can interactively evaluate expressions. We liked it and in order to get the llvm packages to work
in it we compiled the latest GHC version from source. See Appendix B for an explanation how to
set up your development environment to compile our code.
We based our code on Stephen Diehls tutorial2. He provided an excellent tutorial in building a
compiler with Haskell. The LLVM part formed a great starting point for us.

6.6.3 Higher order functions

We have tried to implement higher order functions in the LLVM code generator. Hower because of
time and complexity we were unable to finish this. Theoretically we can implement higher order
functions as followed. The implementation can be similar to the implementation for SSM. Each
function call can be stored in an array block that contains a reference to the initial function, the
supplied arguments and an optional reference to a previous partial function. The parameters have
to be converted to pointers in order to store them in the array. On execution of the final function
we have to convert these parameters back to the correct type. In theory this concept should work
but we were unable to fully implement it.

6.7 AVR

LLVM does not ship with a compiler to compile to AVR. We had to compile LLVM from source
with an AVR patch. It looks like the AVR backend is originally hosted on sourceforge3 but
hasn’t been updated for a while. We found code for LLVM 3.5 on GitHub4. After a fixing a few
compilation issues we got it to work, sort of. Not all programs ran successfully on our Atmel
ATmega88 chip and sometimes the LLVM to AVR compiler crashed with an error.
We were able to demonstrate the playback of a song via SPL. In our compiler we manually coded
some functions that set up the hardware and allow us to access some hardware features from SPL.

6.8 Modified SSM interpreter

In the testPrograms folder, we store spl test programs with their expected output. We modified
the SSM interpreter such that it can print the output of the program directly to the console instead
of launching the user interface. This allowed us to automatically test whether our compiler still
produces the correct code. This came in handy when doing refactoring or writing additions like
the garbage collection or tail call optimization. We could then automatically compile and run the
programs and see whether our changes to the compiler broke anything.

7 Known bugs

1. We do not check whether a tuple is used before initialization, see Section 4.2. The program
will have undefined behaviour when you do this.

2. The SPL code we generate might be so long that the source code ends up in the heap. Since
the heap starts at a fixed address, using the heap will change the program code.

3. When compiling for LLVM, the semantic analysis accepts higher order functions and partial
application. Our SPL to LLVM compiler or LLVM’s typechecker will complain when you
attempt to use them though.

2http://www.stephendiehl.com/llvm/
3http://sourceforge.net/projects/avr-llvm/
4https://github.com/sushihangover/llvm-avr

8

http://www.stephendiehl.com/llvm/
http://sourceforge.net/projects/avr-llvm/
https://github.com/sushihangover/llvm-avr

8 Code organisation

The compiler is written in Haskell. In the source tree, there are 3 folders:

• src, this contains the compiler source code

• test, this contains the code to run our integration tests

• testPrograms, the test code scans this directory for test programs to execute. You can place
various files in here:

– .spl, this contains your spl program you want to test.

– .spl.msg, the expected error messages from our semantic analysis. Spl files without
messages don’t have a .msg file.

– .spl.ssmout, the output that is expected from the SSM interpreter.

– .spl.llvmout, the output that is expected when the code is executed with LLVM.

Our code is divided into several modules:

• CompilerArguments. Contains the code to handle the arguments that were given to the
compiler

• ErrorMessage. The semantic analysis uses this module to generate error messages.

• ErrorShow. This module generates an HTML report of the error messages.

• Grammar. The scanner passes the tokens it has found to this module. This module converts
the tokens to our abstract syntax tree.

• GrammarFunctions. This module contains some utility functions for use with our abstract
syntax tree.

• GrammarShow. Code to pretty print the abstract syntax tree to valid SPL code.

• GrammarStructure. Contains the abstract syntax tree.

• GrammarTable. Contains the rules for our scanner to convert the tokens to the abstract
syntax tree. Most of the code in this module is automatically generated using the XML
output of Bison. The code that was used to convert Bison’s XML to haskell can be found
in the Bison subfolder. We changed the automatically generated reduce function to include
simple optimizations of expressions.

• Label. This generic module can generate unique labels.

• Main. This is the main module for the SSM compiler.

• Scanner. The SPL source code is converted to tokens using the scanner. The scanner
integrates with the Grammar module to generate our abstract syntax tree.

• SemanticAnalysis. This module analyses the abstract syntax tree and detects semantic
errors. We do not use the results of the semantic analysis for code generation.

• Util. Generic utility functions.

The Bison subfolder contains the code to convert Bison’s XML output to Haskell code. The code
for the SSM and LLVM output each have their own subfolder. The SSM subfolder has the following
modules:

• CodeGeneration. This module converts our AST to SSM code.

9

• GarbageCollection. The garbage collection can be enabled in this module by changing a
constant. The majority of this module contains SSM code that is used for the garbage
collection. This code is generated by our compiler with some manual modifications.

• Instructions. All the SSM instructions are encoded in a Haskell data structure. This file
contains that data structure and the code to convert it to text.

• SSMRun. We modified the SSM interpreter such that it can be run from the command line.
This module contains utility functions to easily run the generated SSM code.

In the LLVM subfolder we have the modules:

• AVR. AVR specific code we used for our presentation.

• Codegen. Makes using the llvm-general package easier. For example, it contains helper
functions to create a state where we can easily save instructions in LLVM blocks.

• Emit. Where the Codegen module contains more generic functions to output LLVM code,
Emit contains SPL specific code to convert our AST to llvm-general-pure’s AST.

• LLVMRun. Runs LLVM code using the lli program. The lli program executes the LLVM
code using its internal just-in-time compiler.

• Main. Contains the main function of the cc-llvm program we generate.

• Types. Small module which converts SPL types to their llvm-general-pure equivalent.

9 Example code

We created 10 interesting sample programs which can be found in Appendix A. We have tried to
choose examples that show a broad range of that what our compiler is capable of. Five of the
examples contain typing errors which are given as output. Even more sample programs can be
found in the testPrograms folder in the source folder. These programs are used for unit testing
and contain more samples of LLVM programs.

10 Work division

The work was not divided upfront. We found it was easier not to work on the compiler at the
same time to avoid conflicts. In general we have both worked on every individual part of the
compiler and fixed, when necessary each others code. We usually divided some time slots and
each person continued where the other stopped. A general overview of the work division of part
2 of the assignment:

10.1 Harm

Phase 2:

• Researched and implemented monadic state by combining the state and error monad with
monad transformers. The state contains error messages, a map from identifier to type, the
current return type and compiler arguments.

• Error message system that allows nesting of errors

• Testing framework and a part of the integration tests

• Checking of the presence of a main function

• Analysis of (global) variables

10

• Function call type checking/matching

• Parser support and helper functions of the arrow type

• Basic structure where each Decl element is analysed separately to get lazily retrieve the
error messages

• (Incomplete) type inferencing system which we removed due to complexity

• Variable field resolving

Phase 3:

• Re-implemented type checking of type variables and function calls (now with monomor-
phism).

• Setting field values

• Code structure of code generation

• AST of SSM code in Haskell

• Modified SSM Interpreter for integration tests

• Created integration tests

• Heap memory allocator (version when GC is disabled)

• Code generation of functions, expressions, statements

• Tail call optimization

• Fixed fields that were parsed in the wrong order (and thus the generated code didn’t work
correctly when those were nested)

Phase 4:

• All initial code structure(based on the tutorial)

• Testing different LLVM packages and getting it all to work with GHCi.

• Set-up of virtual machine for development

• Global variables

• Code generation for the functions

• Print and isEmpty function

• Tuples and Lists via malloc

• Automated tests for the LLVM code

• Function calls

• Conversion of types(e.g. in expressions and statements)

• AVR related things

• Optimization of expressions and statements in the parser

11

10.2 Danny

Phase 2:

• Type checking of function declarations

• Checking return types in functions (if the functions contains a return statement and if the
return statement returns the correct type)

• Type checking of statements

• Type checking of the Op1 and Op2 operator

• Type checking of function calls

• Polymorphic type checking (If the type is a → a and the first argument is of type Int then
a must always be of type Int)

• Higher order type checking

• Keeping track of variable and function types in the monad state

• Default SPL functions: print and isEmpty

• Lots of (unit)testing and fixing

Phase 3:

• Type checking fixes with higher order polymorphic functions

• Default functions: print and isEmpty

• Fields (fst, snd, head ..)

• Implementation of lists and the : operator

• op1 and op2 operators

• Garbage collection

Phase 4:

• HTML error report

• If statements

• While statements

• Binary operators

• Higher order functions/partial application for LLVM

• improved GC

12

A Sample code

A.1 sample0.spl

This sample demonstrates declaring a list and using it in a polymorphic function which accepts a
function as parameter. There are no compilation errors.

The errors:

The input:

1. a foldl(a->b->a f, a z, [b] list) {

2. if(isEmpty(list)) {

3. return z;

4. } else {

5. return foldl(f, f(z,list.hd),list.tl);

6. }

7. }

8.

9. Int div(Int a,Int b) {

10. return a / b;

11. }

12.

13. Void main() {

14. [Int] b = 4:2:4:[];

15. print(b);

16. print(foldl(div, 64, b));

17. }

18.

The parsed:

1. a foldl(a->b->a f, a z, [b] list)

2. {

3.

4. if(isEmpty(list))

5. {

6. return z;

7. }

8. else

9. {

10. return foldl(f, f(z, list.hd), list.tl);

11. }

12. }

13. Int div(Int a, Int b)

14. {

15.

16. return (a / b);

17. }

18. Void main()

19. {

20. [Int] b = (4 : (2 : (4 : [])));

21. print(b);

22. print(foldl(div, 64, b));

23. }

A.2 sample1.spl

An empty list can be a list of lists of lists of integers. The polymorphic function print can have a
list of Int as parameter. There are no compilation errors.

The errors:

13

The input:

1. Void main()

2. {

3. [[[Int]]] c = [];

4. print(c);

5. }

6.

The parsed:

1. Void main()

2. {

3. [[[Int]]] c = [];

4. print(c);

5. }

A.3 sample2.spl

This sample shows the usage of higher order functions in global variables. There are no compilation
errors.

The errors:

The input:

1. a test(a aap, a uil)

2. {

3. return aap;

4. }

5.

6. Int->Int a = test(7);

7.

8. Void main()

9. {

10. Int b = a(4);

11. print(b);

12. }

The parsed:

1. a test(a aap, a uil)

2. {

3.

4. return aap;

5. }

6. Int->Int a = test(7);

7. Void main()

8. {

9. Int b = a(4);

10. print(b);

11. }

A.4 sample3.spl

This sample shows that a polymorphic function can be used multiple times with different types.
There are no compilation errors.

The errors:

The input:

1. Bool isEven(Int x) {

2. return x % 2 == 0;

3. }

14

4.

5. [t] reverse ([t] list)

6. {

7. [t] accu = [] ;

8. while (! isEmpty (list))

9. {

10. accu = list.hd : accu ;

11. list = list.tl;

12. }

13. return accu;

14. }

15.

16. [(l,r)] zip ([l] a,[r] b) {

17. return (a.hd,b.hd) : zip (a.tl,b.tl);

18. }

19.

20. a id(a a) {return a;}

21.

22. [b] mapReverse (a->b f, [a] l)

23. {

24. [b] accu = [];

25. while(! isEmpty(l)) {

26. accu = f(l.hd) : accu;

27. l=l.tl;

28. }

29. return accu;

30. }

31.

32. Void main()

33. {

34. [Int] ints = mapReverse(id(), 1 : 2 : 3 :4 : []);

35. [Bool] evens = mapReverse(isEven, ints);

36.

37. print(ints);

38. }

39.

The parsed:

1. Bool isEven(Int x)

2. {

3.

4. return ((x % 2) == 0);

5. }

6. [t] reverse([t] list)

7. {

8. [t] accu = [];

9. while(!isEmpty(list))

10. {

11. accu = (list.hd : accu);

12. list = list.tl;

13. }

14. return accu;

15. }

16. [(l, r)] zip([l] a, [r] b)

17. {

18.

19. return ((a.hd, b.hd) : zip(a.tl, b.tl));

20. }

21. a id(a a)

15

22. {

23.

24. return a;

25. }

26. [b] mapReverse(a->b f, [a] l)

27. {

28. [b] accu = [];

29. while(!isEmpty(l))

30. {

31. accu = (f(l.hd) : accu);

32. l = l.tl;

33. }

34. return accu;

35. }

36. Void main()

37. {

38. [Int] ints = mapReverse(id(), (1 : (2 : (3 : (4 : [])))));

39. [Bool] evens = mapReverse(isEven, ints);

40. print(ints);

41. }

A.5 sample5Fail.spl

This sample shows that you cannot divide a Bool by an Int. It also shows the notation of the
messages. The first part of a message is the type of message: Info, Warning or Error. After that
you have the position which is notated as [line:colon]. The length of the arrows determines to
what ‘parent’ error it belongs. It also shows the optimization of expressions, 4 + 2 is converted to
6 in the pretty printed version.

The errors:

[Info][1:1] About the function ’main’

->[Info][3:2] About variable a

-->[Error][3:18] Operator type mismatch, Bool / Int not allowed

--->[Error][3:14] Type Bool does not match expected type@[3:18]: Int

The input:

1. Void main()

2. {

3. Int a = 4+2+True/5*3;

4. print(a);

5. }

6.

The parsed:

1. Void main()

2. {

3. Int a = (6 + ((True / 5) * 3));

4. print(a);

5. }

A.6 sample6Fail.spl

This sample shows that in all paths of a function there needs to be a return statement. The
if(1>2) is automatically removed because the code can never be reached. Our parser does not
have the messaging system of the semantic analysis so it was hard to give warnings about the dead
code. The if statement of the testOk function is removed because it is always true.

The errors:

[Info][1:1] About the function ’test’

->[Error][1:1] Missing return statement in function test

The input:

16

1. Int test()

2. {

3. if(1 > 2)

4. return 5;

5. }

6.

7. Int testOk() {

8. if(2 > 1)

9. return 4;

10. }

11.

12. Void main()

13. {

14. test();

15. }

16.

The parsed:

1. Int test()

2. {

3.

4. {

5.

6. }

7. }

8. Int testOk()

9. {

10.

11. return 4;

12. }

13. Void main()

14. {

15.

16. test();

17. }

A.7 sample7Fail.spl

In this program we compare lists that contain different types which is rejected by the compiler.

The errors:

[Info][6:1] About the function ’compare’

->[Error][9:2] When analyzing the statement return (sort(as) == sort(bs));

-->[Error][9:18] Operator type mismatch, [Int] == [Bool] not allowed

--->[Error][7:3] Type Int does not match expected type@[8:3]: Bool

The input:

1. [a] sort([a] lijst)

2. {

3. return lijst;

4. }

5.

6. Bool compare() {

7. [Int] as = 1 : 2 : 3: [];

8. [Bool] bs = True : [];

9. return sort(as) == sort(bs);

10. }

11.

12. Void main() {

13. compare();

14. }

17

15.

The parsed:

1. [a] sort([a] lijst)

2. {

3.

4. return lijst;

5. }

6. Bool compare()

7. {

8. [Int] as = (1 : (2 : (3 : [])));

9. [Bool] bs = (True : []);

10. return (sort(as) == sort(bs));

11. }

12. Void main()

13. {

14.

15. compare();

16. }

A.8 sample8fail.spl

This example shows multiple errors in the main function. With the resFail2 variable: In the zipf2
function, the third argument is a c so all instances of c must be an Int in zipf2. This matches
with the isZero function. The error is that in the main function we expect the return type to be
a tuple of Ints but in fact it is a tuple of Bool since the isZero function returns a Bool. With the
resFail1 expression we pass a Boolean as third argument while the isZero function is Int-¿Bool.
This gives an error about overlapping type variables because c should be the same type but an
Int and a Bool is given in the function arguments.

The errors:

[Info][12:1] About the function ’main’

->[Info][15:2] About variable resFail1

-->[Error][8:1] Type Bool does not match expected type@[15:8]: Int

-->[Error][8:1] Type Bool does not match expected type@[15:4]: Int

-->[Info][15:25] When analyzing the function call zipf2((isZero : []), (isZero : []), True)

--->[Error][15:58] Type Bool does not match expected type@[8:13]: Int

->[Info][13:2] About variable resFail2

-->[Error][8:1] Type Bool does not match expected type@[13:8]: Int

-->[Error][8:1] Type Bool does not match expected type@[13:4]: Int

The input:

1. [(a,b)] zipf2([c->a] calist, [c->b] cblist, c param) {

2. c->a calisthd = calist.hd;

3. c->b cblisthd = cblist.hd;

4. [(a,b)] rest = zipf2(calist.tl,cblist.tl,param);

5. return (calisthd(param),cblisthd(param)) : zipf2(calist.tl,cblist.tl,param);

6. }

7.

8. Bool isZero(Int i) {

9. return i == 0;

10. }

11.

12. Void main() {

13. [(Int,Int)] resFail2 = zipf2 (isZero : [], isZero : [], 3);

14. [(Bool,Bool)] resOk = zipf2 (isZero : [], isZero : [], 4);

15. [(Int,Int)] resFail1 = zipf2 (isZero : [], isZero : [], True);

16. print(resOk);

17. }

18.

18

The parsed:

1. [(a, b)] zipf2([c->a] calist, [c->b] cblist, c param)

2. {

3. c->a calisthd = calist.hd;

4. c->b cblisthd = cblist.hd;

5. [(a, b)] rest = zipf2(calist.tl, cblist.tl, param);

6. return ((calisthd(param), cblisthd(param)) : zipf2(calist.tl, cblist.tl, param));

7. }

8. Bool isZero(Int i)

9. {

10.

11. return (i == 0);

12. }

13. Void main()

14. {

15. [(Int, Int)] resFail2 = zipf2((isZero : []), (isZero : []), 3);

16. [(Bool, Bool)] resOk = zipf2((isZero : []), (isZero : []), 4);

17. [(Int, Int)] resFail1 = zipf2((isZero : []), (isZero : []), True);

18. print(resOk);

19. }

A.9 sample9fail.spl

This sample shows resolving of the return type in polymorphic functions. The return type should
be of type a but a type b is returned.

The errors:

[Info][2:1] About the function ’caller’

->[Error][5:2] When analyzing the statement return var(arg1);

-->[Error][5:9] Incorrect return type b

--->[Error][4:5] Type b does not match expected type@[2:1]: a

->[Info][4:2] About variable var

-->[Error][2:10] Type a does not match expected type@[4:5]: b

The input:

1. g test(g g, c b) {return g;}

2. a caller(a arg1)

3. {

4. a->b var = test(arg1);

5. return var(arg1);

6. }

7.

8. Void main() {{}}

9.

The parsed:

1. g test(g g, c b)

2. {

3.

4. return g;

5. }

6. a caller(a arg1)

7. {

8. a->b var = test(arg1);

9. return var(arg1);

10. }

11. Void main()

12. {

13.

14. {

15.

19

16. }

17. }

A.10 sample10fail.spl

This sample shows a warning when a a local variable overrides a global one.

The errors:

[Info][3:1] About the function ’main’

->[Info][4:2] About variable a

-->[Warning][4:2] Overwrites the existing declaration of ’a’ at [1:1]

The input:

1. Int a = 3;

2.

3. Void main() {

4. Int a = 4;

5. print(a); // should print 4

6. }

7.

The parsed:

1. Int a = 3;

2. Void main()

3. {

4. Int a = 4;

5. print(a);

6. }

B Environment setup instructions

We do not know the exact steps we took to set up our environment. We work on (X)Ubuntu
14.04. To be able to compile our program you are probably fine with executing the following in a
terminal:

sudo apt-get install haskell-platform g++ llvm ghc-dynamic

cabal update

cabal install cabal-install

echo "PATH=~/.cabal/bin:\$PATH" >> ~/.bashrc

#should be version 1.20.0.1

cabal -v

#now go to the directory of our compiler source code

cabal sandbox init

cabal install

It should now compile the executables. If you want to use GHCi, you need a newer version of
GHC. Make sure to have the new cabal version using the steps above. The following steps will
help you installing a newer version of ghc:

sudo apt-get install git autoconf make libghc-ncurses-dev

git clone git://git.haskell.org/ghc.git

cd ghc

VERSION=7.8.2

git checkout -b ghc-${VERSION} ghc-${VERSION}-release

./sync-all --no-dph get

./sync-all checkout -b ghc-${VERSION} ghc-${VERSION}-release

perl boot

./configure

20

make

sudo make install

#ghc versie should be 7.8.2

ghc --version

sudo apt-get autoremove ghc

sudo apt-get install libgmp-dev libmpfr-dev libbsd-dev libgmpxx4ldbl zlib1g-dev happy

rm ~/.cabal/config

rm -rf ~/.ghc

cabal update

cabal install cabal-install --enable-shared

#cd go to the source directory

cabal sandbox init

cabal configure --enable-shared

cabal install llvm-general --enable-shared -fshared-llvm llvm-general

cabal install --enable-shared

cabal repl cc-llvm

21

	Introduction
	Grammar
	Parser
	Semantic analysis
	Scoping rules
	Type rules

	SSM code generation
	Calling semantics
	Memory Management
	Compilation scheme
	Memory allocation of types
	Function calls

	Extensions
	Higher order functions
	Error reporting
	Garbage collection
	Tail call optimization for SSM
	Expression optimization
	LLVM code generation
	Memory management
	Used packages
	Higher order functions

	AVR
	Modified SSM interpreter

	Known bugs
	Code organisation
	Example code
	Work division
	Harm
	Danny

	Sample code
	 sample0.spl
	 sample1.spl
	 sample2.spl
	 sample3.spl
	 sample5Fail.spl
	 sample6Fail.spl
	 sample7Fail.spl
	 sample8fail.spl
	 sample9fail.spl
	 sample10fail.spl

	Environment setup instructions

